A Tool for Pre-Operational Daily Mapping of Floods and Permanent Water Using Sentinel-1 Data

نویسندگان

چکیده

An automated tool for pre-operational mapping of floods and inland waters using Sentinel-1 data is presented. The acronym AUTOWADE (AUTOmatic Water Areas DEtector) used to denote it. provides the end user (Italian Department Civil Protection) with a continuous, near real-time (NRT) monitoring extent water surfaces (floodwater permanent water). It implements following operations: downloading products; preprocessing products storage resulting geocoded calibrated data; generation intermediate products, such as exclusion mask; application floodwater/permanent algorithm; output layer, i.e., map water; delivery layer user. open algorithm implemented in based on new approach, denoted buffer-from-edge (BFE), which combines different techniques, clustering, edge filtering, automatic thresholding region growing. copes also typical presence gaps flood maps caused by undetected flooded vegetation. attempt partially fill these analyzing vegetated areas adjacent performed another tool, fuzzy logic. BFE approach has been validated offline produced Copernicus Emergency Management Service. Validation given good results F1-score larger than 0.87 kappa coefficient 0.80. detect vegetation visually compared optical aerial photos; its capability some present confirmed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Operational Forest Mapping Tool Using Spaceborne Sar Data

SAR data has been shown to offer useful information for forestry applications, and especially in cases of major forest change such as that caused by severe storms or fires. In these situations, the possibility of exploiting radar remotely sensed data which is not affected by phenomena such as water vapour, smoke or clouds provides great advantages with respect to optical sensors. Under these ci...

متن کامل

An Operational Rice Field Mapping Tool Using Spaceborne Sar Data

Rice is of significant importance for many tropical countries, both as a staple food and as an agricultural product for international trading. Crucial parameters for yield forecasting are the area of the rice fields and the rice growth status. Spaceborne microwave remote sensing is a technology that permits mapping and monitoring of the rice growth over large areas at regular intervals. This pa...

متن کامل

Evaluation of Sentinel-1 Interferometric SAR Coherence efficiency for Land Cover Mapping

In this study, the capabilities of Interferometric Synthetic Aperture Radar (InSAR) time series data and machine learning have been evaluated for land cover mapping in Iran. In this way, a time series of Sentinel-1 SAR data (including 16 SLC images with approximately 24 days time interval) from 2018 to 2020 were used for a region of Ahvaz County located in Khuzestan province. Using InSAR proces...

متن کامل

the effect of using learning logs as a self-assessment tool on the syntactic development among iranian pre-intermediate efl learners

چکیده: هدف از انجام این پژوهش ،بررسی استفاده از یادداشتهای یادگیری به عنوان یکی از ابزار های خود ارزشیابی بر افزایش مهارت دستوری (صورتهای شرطی و مجهول) زبان آموزان در مقطع پیش متوسطه بوده است .بدین منظور یک تست استاندارد در مقطع پیش متوسطه بین 90 نفر زبان آموز در سنین 15 تا 20 سال در آموزشگاه زبان انگلیسی امین و پارسا در شهرستان شاهرود برگزار شد از میان این افراد 60 فراگیر انتخاب شدند. و این 6...

A Method for Automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery

Reliable information about the spatial distribution of surface waters is critically important in various scientific disciplines. Synthetic Aperture Radar (SAR) is an effective way to detect floods and monitor water bodies over large areas. Sentinel-1 is a new available SAR and its spatial resolution and short temporal baselines have the potential to facilitate the monitoring of surface water ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2021

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs13071342